46 research outputs found

    PRIMUS: The relationship between Star formation and AGN accretion

    Full text link
    We study the evidence for a connection between active galactic nuclei (AGN) fueling and star formation by investigating the relationship between the X-ray luminosities of AGN and the star formation rates (SFRs) of their host galaxies. We identify a sample of 309 AGN with 1041<LX<104410^{41}<L_\mathrm{X}<10^{44} erg s−1^{-1} at 0.2<z<1.20.2 < z < 1.2 in the PRIMUS redshift survey. We find AGN in galaxies with a wide range of SFR at a given LXL_X. We do not find a significant correlation between SFR and the observed instantaneous LXL_X for star forming AGN host galaxies. However, there is a weak but significant correlation between the mean LXL_\mathrm{X} and SFR of detected AGN in star forming galaxies, which likely reflects that LXL_\mathrm{X} varies on shorter timescales than SFR. We find no correlation between stellar mass and LXL_\mathrm{X} within the AGN population. Within both populations of star forming and quiescent galaxies, we find a similar power-law distribution in the probability of hosting an AGN as a function of specific accretion rate. Furthermore, at a given stellar mass, we find a star forming galaxy ∼2−3\sim2-3 more likely than a quiescent galaxy to host an AGN of a given specific accretion rate. The probability of a galaxy hosting an AGN is constant across the main sequence of star formation. These results indicate that there is an underlying connection between star formation and the presence of AGN, but AGN are often hosted by quiescent galaxies

    The MOSDEF survey: a stellar mass-SFR-metallicity relation exists at z∼2.3z\sim2.3

    Full text link
    We investigate the nature of the relation among stellar mass, star-formation rate, and gas-phase metallicity (the M∗_*-SFR-Z relation) at high redshifts using a sample of 260 star-forming galaxies at z∼2.3z\sim2.3 from the MOSDEF survey. We present an analysis of the high-redshift M∗_*-SFR-Z relation based on several emission-line ratios for the first time. We show that a M∗_*-SFR-Z relation clearly exists at z∼2.3z\sim2.3. The strength of this relation is similar to predictions from cosmological hydrodynamical simulations. By performing a direct comparison of stacks of z∼0z\sim0 and z∼2.3z\sim2.3 galaxies, we find that z∼2.3z\sim2.3 galaxies have ∼0.1\sim0.1 dex lower metallicity at fixed M∗_* and SFR. In the context of chemical evolution models, this evolution of the M∗_*-SFR-Z relation suggests an increase with redshift of the mass-loading factor at fixed M∗_*, as well as a decrease in the metallicity of infalling gas that is likely due to a lower importance of gas recycling relative to accretion from the intergalactic medium at high redshifts. Performing this analysis simultaneously with multiple metallicity-sensitive line ratios allows us to rule out the evolution in physical conditions (e.g., N/O ratio, ionization parameter, and hardness of the ionizing spectrum) at fixed metallicity as the source of the observed trends with redshift and with SFR at fixed M∗_* at z∼2.3z\sim2.3. While this study highlights the promise of performing high-order tests of chemical evolution models at high redshifts, detailed quantitative comparisons ultimately await a full understanding of the evolution of metallicity calibrations with redshift.Comment: 19 pages, 8 figures, accepted to Ap

    The MOSDEF Survey: Kinematic and Structural Evolution of Star-Forming Galaxies at 1.4≤z≤3.81.4\leq z\leq 3.8

    Full text link
    We present ionized gas kinematics for 681 galaxies at z∼1.4−3.8z\sim 1.4-3.8 from the MOSFIRE Deep Evolution Field survey, measured using models which account for random galaxy-slit misalignments together with structural parameters derived from CANDELS Hubble Space Telescope (HST) imaging. Kinematics and sizes are used to derive dynamical masses. Baryonic masses are estimated from stellar masses and inferred gas masses from dust-corrected star formation rates (SFRs) and the Kennicutt-Schmidt relation. We measure resolved rotation for 105 galaxies. For the remaining 576 galaxies we use models based on HST imaging structural parameters together with integrated velocity dispersions and baryonic masses to statistically constrain the median ratio of intrinsic ordered to disordered motion, V/σV,0V/\sigma_{V,0}. We find that V/σV,0V/\sigma_{V,0} increases with increasing stellar mass and decreasing specific SFR (sSFR). These trends may reflect marginal disk stability, where systems with higher gas fractions have thicker disks. For galaxies with detected rotation we assess trends between their kinematics and mass, sSFR, and baryon surface density (Σbar,e\Sigma_{\mathrm{bar},e}). Intrinsic dispersion correlates most with Σbar,e\Sigma_{\mathrm{bar},e} and velocity correlates most with mass. By comparing dynamical and baryonic masses, we find that galaxies at z∼1.4−3.8z\sim 1.4-3.8 are baryon dominated within their effective radii (RER_E), with Mdyn/Mbaryon increasing over time. The inferred baryon fractions within RER_E, fbarf_{\mathrm{bar}}, decrease over time, even at fixed mass, size, or surface density. At fixed redshift, fbarf_{\mathrm{bar}} does not appear to vary with stellar mass but increases with decreasing RER_E and increasing Σbar,e\Sigma_{\mathrm{bar},e}. For galaxies at z≥2z\geq2, the median inferred baryon fractions generally exceed 100%. We discuss possible explanations and future avenues to resolve this tension.Comment: Accepted to ApJ. Added Figure 9, corrected sample size (main results unchanged). 28 pages, 13 figure

    Disentangling the AGN and star-formation contributions to the radio-X-ray emission of radio-loud quasars at 1<z<21<z<2

    Full text link
    To constrain the emission mechanisms responsible for generating the energy powering the active galactic nuclei (AGN) and their host galaxies, it is essential to disentangle the contributions from both as a function of wavelength. Here we introduce a state-of-the-art AGN radio-to-X-ray spectral energy distribution fitting model (ARXSED). ARXSED uses multiple components to replicate the emission from the AGN and their hosts. At radio wavelengths, ARXSED accounts for radiation from the radio structures (e.g., lobes,jets). At near-infrared to far-infrared wavelengths, ARXSED combines a clumpy medium and a homogeneous disk to account for the radiation from the torus. At the optical-UV and X-ray, ARXSED accounts for the emission from the accretion disk. An underlying component from radio to UV wavelengths accounts for the emission from the host galaxy. Here we present the results of ARXSED fits to the panchromatic SEDs of 20 radio-loud quasars from the 3CRR sample at 1<z≲21<z\lesssim2. We find that a single power-law is unable to fit the radio emission when compact radio structures (core, hot spots) are present. We find that the non-thermal emission from the quasars' radio structures contributes significantly (>70%>70\%) to the submm luminosity in half the sample, impacting the submm-based star formation rate estimates. We present the median intrinsic SED of the radio-loud quasars at z>1z>1 and find that the median SED of \cite{Elvis1994} is unable to describe the SED of the radio-selected AGN at z>1z>1. The AGN torus and accretion disk parameters inferred from our fitting technique agree with those in the literature for similar samples. We find that the orientation of the torus/accretion disk does not line up with the inclination of the radio jets in our sample

    The MOSDEF Survey: An Improved Voronoi Binning Technique on Spatially Resolved Stellar Populations at z~2

    Full text link
    We use a sample of 350 star-forming galaxies at 1.25<z<2.661.25<z<2.66 from the MOSFIRE Deep Evolution Field survey to demonstrate an improved Voronoi binning technique that we use to study the properties of resolved stellar populations in z∼2z\sim2 galaxies. Stellar population and dust maps are constructed from the high-resolution CANDELS/3D-HST multi-band imaging. Rather than constructing the layout of resolved elements (i.e., Voronoi bins) from the S/N distribution of the H160H_{160}-band alone, we introduce a modified Voronoi binning method that additionally incorporates the S/N distribution of several resolved filters. The SED-derived resolved E(B-V)stars_{\text{stars}}, stellar population ages, SFRs, and stellar masses that are inferred from the Voronoi bins constructed from multiple filters are generally consistent with the properties inferred from the integrated photometry within the uncertainties, with the exception of the inferred E(B-V)stars_{\text{stars}} from our z∼1.5z\sim1.5 sample due to their UV slopes being unconstrained by the resolved photometry. The results from our multi-filter Voronoi binning technique are compared to those derived from a "traditional" single-filter Voronoi binning approach. We find that single-filter binning produces inferred E(B-V)stars_{\text{stars}} that are systematically redder by 0.02 mag on average, but could differ by up to 0.20 mag, and could be attributed to poorly constrained resolved photometry covering the UV slope. Overall, we advocate that our methodology produces more reliable SED-derived parameters due to the best-fit resolved SEDs being better constrained at all resolved wavelengths--particularly those covering the UV slope.Comment: 23 pages, 15 figures, accepted for publication in MNRA

    The MOSFIRE Deep Evolution Field (MOSDEF) Survey: Rest-Frame Optical Spectroscopy for ~1500 H-Selected Galaxies at 1.37 < z < 3.8

    Full text link
    In this paper we present the MOSFIRE Deep Evolution Field (MOSDEF) survey. The MOSDEF survey aims to obtain moderate-resolution (R=3000-3650) rest-frame optical spectra (~3700-7000 Angstrom) for ~1500 galaxies at 1.37<z<3.80 in three well-studied CANDELS fields: AEGIS, COSMOS, and GOODS-N. Targets are selected in three redshift intervals: 1.37<z<1.70, 2.09<z<2.61, and 2.95<z<3.80, down to fixed H_AB (F160W) magnitudes of 24.0, 24.5 and 25.0, respectively, using the photometric and spectroscopic catalogs from the 3D-HST survey. We target both strong nebular emission lines (e.g., [OII], Hbeta, [OIII], 5008, Halpha, [NII], and [SII]) and stellar continuum and absorption features (e.g., Balmer lines, Ca-II H and K, Mgb, 4000 Angstrom break). Here we present an overview of our survey, the observational strategy, the data reduction and analysis, and the sample characteristics based on spectra obtained during the first 24 nights. To date, we have completed 21 masks, obtaining spectra for 591 galaxies. For ~80% of the targets we derive a robust redshift from either emission or absorption lines. In addition, we confirm 55 additional galaxies, which were serendipitously detected. The MOSDEF galaxy sample includes unobscured star-forming, dusty star-forming, and quiescent galaxies and spans a wide range in stellar mass (~10^9-10^11.5 Msol) and star formation rate (~10^0-10^3 Msol/yr). The spectroscopically confirmed sample is roughly representative of an H-band limited galaxy sample at these redshifts. With its large sample size, broad diversity in galaxy properties, and wealth of available ancillary data, MOSDEF will transform our understanding of the stellar, gaseous, metal, dust, and black hole content of galaxies during the time when the universe was most active.Comment: Accepted for publication in ApJS; 28 pages, 19 figures; MOSDEF spectroscopic redshifts available at http://mosdef.astro.berkeley.edu/Downloads.htm

    The MOSDEF Survey: Significant Evolution in the Rest-Frame Optical Emission Line Equivalent Widths of Star-Forming Galaxies at z=1.4-3.8

    Full text link
    We use extensive spectroscopy from the MOSFIRE Deep Evolution Field (MOSDEF) survey to investigate the relationships between rest-frame optical emission line equivalent widths (WW) and a number of galaxy and ISM characteristics for a sample of 11341134 star-forming galaxies at redshifts 1.4≲z≲3.81.4\lesssim z\lesssim 3.8. We examine how the equivalent widths of [OII]λλ3727,3730\lambda\lambda 3727, 3730, Hβ\beta, [OIII]λλ4960,5008\lambda\lambda 4960, 5008, [OIII]++Hβ\beta, Hα\alpha, and Hα\alpha+[NII]λλ6550,6585\lambda\lambda 6550, 6585, depend on stellar mass, UV slope, age, star-formation rate (SFR) and specific SFR (sSFR), ionization parameter and excitation conditions (O32 and [OIII]/Hβ\beta), gas-phase metallicity, and ionizing photon production efficiency (ξion\xi_{\rm ion}). The trend of increasing WW with decreasing stellar mass is strongest for [OIII] (and [OIII]+Hβ\beta). More generally, the equivalent widths of all the lines increase with redshift at a fixed stellar mass or fixed gas-phase metallicity, suggesting that high equivalent width galaxies are common at high redshift. This redshift evolution in equivalent widths can be explained by the increase in SFR and decrease in metallicity with redshift at a fixed stellar mass. Consequently, the dependence of WW on sSFR is largely invariant with redshift, particularly when examined for galaxies of a given metallicity. Our results show that high equivalent width galaxies, specifically those with high W([OIII])W({\rm [OIII]}), have low stellar masses, blue UV slopes, young ages, high sSFRs, ISM line ratios indicative of high ionization parameters, high ξion\xi_{\rm ion}, and low metallicities. As these characteristics are often attributed to galaxies with high ionizing escape fractions, galaxies with high WW are likely candidates for the population that dominates cosmic reionization.Comment: 34 pages, 8 tables, 28 figures; submitted 2018 August 23, accepted 2018 October 29 to the Astrophysical Journa

    The MOSDEF Survey: the Variation of the Dust Attenuation Curve with Metallicity

    Full text link
    We derive the UV-optical stellar dust attenuation curve of galaxies at z=1.4-2.6 as a function of gas-phase metallicity. We use a sample of 218 star-forming galaxies, excluding those with very young or heavily obscured star formation, from the MOSFIRE Deep Evolution Field (MOSDEF) survey with Hα\alpha, Hβ\beta, and [NII]λ6585\lambda 6585 spectroscopic measurements. We constrain the shape of the attenuation curve by comparing the average flux densities of galaxies sorted into bins of dust obscuration using Balmer decrements, i.e., Hα\alpha-to-Hβ\beta luminosities. The average attenuation curve for the high-metallicity sample (12+log(O/H)>8.5, corresponding to M∗≳1010.4 M⊙M_*\gtrsim10^{10.4}\,M_{\odot}) has a shallow slope, identical to that of the Calzetti local starburst curve, and a significant UV 2175A extinction bump that is ∼0.5×\sim 0.5\times the strength of the Milky Way bump. On the other hand, the average attenuation curve of the low-metallicity sample (12+log(O/H) ∼8.2−8.5\sim 8.2-8.5) has a steeper slope similar to that of the SMC curve, only consistent with the Calzetti slope at the 3σ3\sigma level. The UV bump is not detected in the low-metallicity curve, indicating the relative lack of the small dust grains causing the bump at low metallicities. Furthermore, we find that on average the nebular reddening (E(B-V)) is a factor of 2 times larger than that of the stellar continuum for galaxies with low metallicities, while the nebular and stellar reddening are similar for galaxies with higher metallicities. The latter is likely due to a high surface density of dusty clouds embedding the star forming regions but also reddening the continuum in the high-metallicity galaxies.Comment: 20 pages and 9 figures and 1 appendix, accepted for publication in Ap
    corecore